Analytical geometry

Segments

Calculating the distance between points A(x1,y1) and B(x2,y2)

Enter the coordinates of the point A(x1,y1)

x1: y1:

A (,)

Enter the coordinates of the point B(x2,y2)

x2: y2:

B (,)

d(A,B) =√ ( x2 - x1)² + ( y2 - y1 ) = √ ( {{ x2 }} - {{ x1f() }} )²+( {{ y2}} - {{y1f() }} )²= {{ Math.sqrt((x2 - x1)*(x2 - x1)+(y2 - y1)*(y2 - y1)) }}

The midpoint of the segment A(x1,y1) B(x2,y2)

Enter the coordinates of the point A(x1,y1)

x1:
y1:

A (,)

Enter the coordinates of the point B(x2,y2)

x2:
y2:

B (,)

The midpoint is in the point A1( (x1 + x2)/2 , (y1 + y2)/2 )= A1( ( {{x42}} + {{ x41f()}} )/2 , ( {{ y42}} + {{y41f()}} )/2 )= A1 ( {{( x42 + x41)/2 }} , {{ ( y42 + y41)/2 }} )

Triangle

The centroid of the triangle which vertex are A( x1, y1 ), B( x2, y2 ) i C( x3, y3 )
Mediana
teziste

The centroid is the point of intersection medianas .
For description of construction go to Youtube
youtube style=

teziste

Enter the coordinates of the point A(x1,y1)

x1:
y1:

A(,)

Enter the coordinates of the point B(x2,y2)

x2:
y2:

B(,)

Enter the coordinates of the point C( x3, y3 )

x3:
y3:

C(,)

T((x1+x2+x3)/3,(y1+y2+y3)/3)= T( ( {{x31}} + {{x32f()}} + {{x33f()}} )/3 , ( {{y31}} + {{y32f()}} + {{y33f()}})/3 ) = T ( {{(x31+x32+x33)/3}} , {{(y31+y32+y33)/3}} )